Identification of Multisensor Conversion Characteristic Using Neural Networks
نویسندگان
چکیده
A method of individual conversion characteristic identification of multisensor using reduced number of its calibration/testing results is described in this paper. The proposed method is based on the neural-based reconstruction (approximation or prediction) of surface points of multisensor conversion characteristic. Each neural network module reconstructs separate point of the surface. Our results show that the use of a Support Vector Machine (SVM) model allows improving the reconstruction accuracy of multisensor conversion characteristic. The reconstruction results obtained by SVM are compared with the results obtained by a multilayer perceptron (MLP). Copyright © 2013 IFSA.
منابع مشابه
Multisensors Signal Processing Using Microcontroller and Neural Networks Identification
An approach of multisensor signals processing at microprocessor or 8 bit microcontrollers is showed in this paper. This approach is based on multisensor individual conversion function or individual characteristic curve identification method with using of neural networks. It allow to reduce an amount of calibration points and increase the precision of identification with comparatively to well kn...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملNeural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
متن کاملEstimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks
Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013